
Automatic Synthesis of Safety-Related Software∗

— Short Paper —

Johann Schumann
RIACS / NASA Ames

email:schumann@email.arc.nasa.gov

Abstract

For specific domains (e.g., data analysis, planning and
scheduling, or state estimation), automated program synthe-
sis systems have been developed which are capable of pro-
ducing hundreds of lines of non-trivial code. However, the
potential applicability of an automatic program synthesis sys-
tem does not only depend on size and quality of the generated
code, but also its ability to be integrated into the overall soft-
ware process. Therefore, the generation of executable code
alone is not enough. In this paper, we will describe three
techniques which enhance the capabilities of a synthesis tool
with respect to generation of explanations, certificates, and
simulation data. The synthesis system encodes enough do-
main knowledge, such that the appropriate information can
directly be extracted during the synthesis process.
ExplainIt! is a component for the AMPHION/NAV system
(synthesis of state estimation software) which automatically
generates and displays explanations for each piece of the syn-
thesized code, thus effectively achieving traceability between
code and specification.
For safety-relevant applications, software must undergo a rig-
orous certification process where it must be demonstrated that
certain safety policies are not violated. Traditional formal
verification approaches (e.g., with Hoare-style rules) are im-
practical, because they require large amounts of manual code
annotations. In this paper, we discuss an extension of the AU-
TOBAYES system (synthesis of data analysis programs) for
the automatic generation of code annotations which can be
handled by a verification condition generator and an automat-
ed theorem prover. Speed of this approach compares favor-
ably with commercial static analysis tools (e.g., PolySpace).
Finally, we discuss a module of AUTOBAYES which synthe-
sizes code for the generation of artificial data for simulation,
experimentation, and testing purposes.

Introduction
Over the recent years, size and complexity of software in
safety-related areas has grown tremendously. A major rea-
son for this is that functionality which has been traditionally
∗This paper discusses work done in several synthesis projects

at the Automated Software Engineering group (Guillaume Brat,
Bernd Fischer, Mike Lowry, John Penix, Tom Pressburger, Phil
Oh, Grigore Rosu, Mahadevan Subramaniam, Jeffrey van Baalen,
Jonathan Whittle).
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

realized by hardware is now implemented as a program on
a general-purpose processor, thus reducing production costs
and increasing functionality. Typical application areas range
from avionics, process control (e.g., for chemical or nuclear
plants) to car industry. However, the production of reliable,
high-quality code for safety-related applications is far from
easy. In particular, modern, highly iterative software lifecy-
cles (e.g., spiral or use-case based processes) are major cost
drivers, because for each iteration, substantial testing, doc-
umentation, and certification efforts are necessary. For ex-
ample, flight-critical software (e.g., for position estimation
or control of an aircraft) requires rigorous certification by
an independent certification authority (e.g., the FAA). This
time-consuming, highly manual process which is defined in
standard documents (e.g., DO-178B) prescribes the required
testing, documentation, and engineering efforts to guarantee
traceability between specification and the executable binary.

An approach which could facilitate the production of such
pieces of software is automated program synthesis. Giv-
en a high-level specification, an automated program syn-
thesis tool generates executable code which implements the
specification. Because rigorous formal logic underlies this
approach, the synthesized code is often considered to be
“correct-by-construction”.

Deduction-based program synthesis is around for a
long time, and several synthesis systems (e.g., Am-
phion (Stickelet al. 1994), KIDS (Smith 1990), or Plan-
ware (Burstein & Smith 1996)) have been developed over
the years and it seems that in certain (albeit small) domain-
s such systems are capable of producing reasonably good
code. However, the usability of such systems in the area
of safety-related domains is still rather limited. In fac-
t, they share many severe limitations with state-of-the-art
code generators for traditional modeling systems (e.g., Ma-
trixX (MatrixX 2001), ControlShell (ControllShell 2001)).
As discussed above, production of a piece of code is not e-
nough. Rather, a code-producing system needs to synthesize
the following artifacts:

• well documented, human-understandable code. Only if a
piece of software can be easily understood, manual modi-
fications can be applied or it can be subject to (successful)
code reviews.

• traceability information between code and specification



such that all pieces of the code can be related to their ori-
gin in the specification.

• support for simulation, animation, and testing. A success-
ful synthesis system needs to be able to produce artificial
data which conform to the given specification. State-of-
the-art modeling tools (e.g., Simulink/MatLab, Controll-
Shell) are already pretty advanced with that respect.

• support for certification (e.g., providing annotations or
even proofs).

In this paper, we demonstrate that a program synthesis
system encodes enough domain knowledge to support the
requirements listed above. We will discuss three extension-
s to a program synthesis architecture which, in addition to
producing executable code, generate detailed documenta-
tion/explanations, certificates for the synthesized code with
respect to a given safety policy, and test/simulation data, re-
spectively.

The work, described in this paper, is ongoing work.
Therefore, these extensions have not been devel-
oped for one single program synthesis system, but
rather for two tools, namely AMPHION/NAV and
AUTOBAYES. AMPHION/NAV (Whittle et al. 2001,-
Schumann & Robinson 2001) is a tool based on the
Amphion system (Stickelet al. 1994) which is capable
of automatically synthesizing C/C++ code for state-
estimation and navigation of aircraft or spacecraft. The
domain of AUTOBAYES (Fischer & Schumann 2001,-
Fischer, Schumann, & Pressburger 2000) is data analysis,
using the approach of Bayesian networks. This tool can
be used for scientific data analysis (e.g., clustering or
classification problems), but it also can synthesize code to
model sensors and sensor failures. Both systems are aim
toward applications where safety is important, for example,
state-estimation of Mars rovers or (on-board) scientific data
analysis.

Architecture of an Extended Synthesis System

Figure 1 shows the system architecture of a modern, extend-
ed program synthesis system. Given a specification, the syn-
thesis system produces executable code. For this core task,
domain knowledge in form of a domain theory is used to
guide the synthesis process. The underlying principle of the
synthesis engine is of no great importance for the discus-
sion in this paper. For example, the AMPHION/NAV sys-
tem is based upon deduction-based synthesis (using the first-
order theorem proverSNARK), whereas AUTOBAYES uses
schema-guided synthesis. However, all these systems have
in common that they rely on a substantial body of encod-
ed domain knowledge. This domain knowledge, combined
with information on how the program was assembled (e.g., a
proof) can be used to extend the synthesis system to produce
commented code, design documents, test data, and support
for rigorous certification. These extensions will be described
in the following sections.

Figure 1: System Architecture for an Extended Program
Synthesis System

Explaining Synthesized Code
In the AMPHION/NAV system, most axioms in the domain
theory1 are given as a set of first-order equations. These e-
quations relate the various objects on different abstraction
levels. Due to the synthesis process (deductive synthesis)
and additional program transformation steps, it is nearly im-
possible to tell which parts of the synthesized code corre-
sponds to which part of the specification, or why the code
is structured in a specific way. In a safety-related appli-
cation environment, traceability between specification and
code is of major importance. During manual developmen-
t of such software, considerable effort is spent on writing
detailed documentation on all aspects of the code.

Here, deductive program synthesis can help, because all
information relating specification, code, and domain theory
is available in theproof produced by the automated theo-
rem prover. The proof, containing hundreds of inference
steps is converted in such a way that it relates the input
specification with the final product (C/C++ code). The ex-
planation thus can be seen as a description of the program
design “from first principle”. AMPHION/NAV contains
the subsystem “ExplainIt!” which produces explanations
for the synthesis task (for details see (Whittleet al. 2001,-
Schumann & Robinson 2001)). Each axiom of the domain
theory is annotated by explanation templates, consisting of
plain text and (logical) variables. Whenever an axiom is
used for the proof, the variables in the templates are instanti-
ated. In order to find the entire explanation, a set of explana-
tion equalities (van Baalenet al. 1998) is generated which is
used to compose the corresponding explanation templates.

Human readability and understandability of such an ex-
planation is extremely important. However, the target audi-
ence is not a logically trained synthesis person, but a domain
expert/engineer. This means that not only all evidence of

1The domain theory for AMPHION/NAV is built on top of the
domain theory of the AMPHION system (Stickelet al. 1994) on
geometric relationships, coordinate systems, and celestial mechan-
ics.



Figure 2: Screen dump of a part of the explanation document

low-level deduction needs to be hidden from the user. Fur-
thermore, the representation of data should use form and vo-
cabulary of the domain. In the domain of AMPHION/NAV,
the commonly used data structures are vectors and matrices
(as opposed to lists and lists-of-lists in AMPHION/NAV’s in-
ternal representation). Thus, explanation of a matrix is best
represented in a tabular form, as shown in the screen-dump
in Figure 2. It shows a part of the explanation for a matrix
(“measurement matrixH”) which relates the measurements
with the current position estimate. Each cell of the table
corresponds to a single entry in the matrix. This HTML
document is produced from the internal XML representation
which is generated by “ExplainIt!”. Translation/formatting
is done with XSLT. Hyperlinked HTML documents have the
advantage that all statements of the synthesized code can be
linked to their explanations. Thus, a simple click on a state-
ment immediately produces the related documentation. Us-
ing XML as a flexible internal document format enables us
to also generate printed PDF documentation in a standard-
ized form.

Certifying Synthesized Code
Code certification is a lightweight approach (as opposed
to e.g., full functional verification) to demonstrate software
quality on a formal level. Its basic idea is to produce formal
proofs demonstrating that the code satisfies certain quality
properties (e.g., memory or operator safety). These proofs
can be seen as certificates (for the produced code) which can
be checked independently by a simple proof checker. Since
code certification uses the same underlying technology as
Hoare-style program verification, it also requires many de-
tailed annotations (e.g., loop invariants) to make the proofs
possible. However, manually adding these annotations to the

code is an extremely time-consuming and error-prone task..
In a certification extension of AUTOBAYES, we address

this problem (Whalen, Schumann, & Fischer 2002). AUTO-
BAYES contains sufficient high-level domain knowledge to
generate the required detailed annotations. Because all con-
straints and information on design decisions is available dur-
ing synthesis time, detailed and powerful local annotations
can be generated easily by AUTOBAYES. A separate prop-
agation algorithm distributes the annotations to all places in
the code where they are valid. When annotations were gen-
erated by AUTOBAYES, the original 380 lines of commented
code grew to more than 2100 lines of code with annotations.
This is a clear indication that writing manual annotations are
infeasible.

From this annotated code, a general-purpose ver-
ification condition generator (in our case MOPS
(Kaiser, Fischer, & Struckmann 2000)) produces a set
of proof obligations in first-order logic. The obligations are
then processed by the automated theorem prover E-SETHEO
(CASC 2001).

In (Whalen, Schumann, & Fischer 2002) we have demon-
strated our approach by certifying operator safety and mem-
ory safety for a generated iterative data classification pro-
gram (≈ 380 lines of documented C++ code) without man-
ual annotation of the code. For this example, a total of 69
proof tasks have been generated. E-SETHEO could solve
65 automatically with a run-time limit of60 seconds on a
1000 MHz SunBlade workstation. Most of the tasks could
be solved in about one second, but several tasks took up
to 40 seconds (average time:6.3 seconds). The remaining
four proof tasks currently require some manual preprocess-
ing which will be automated in future versions. A com-
parison with the state-of-the-art commercial static analysis
tool PolySpace (PolySpace 2002) showed that our approach
could reach a better coverage with a substantially shorter
runtime.

Generation of Simulation and Test Data
Testing and simulation plays a vital role in most software de-
velopment processes. Whereas testing aims at showing that
the piece of code works correctly, simulation is often used
to demonstrate how the code works and to assess its quality
and performance. Therefore, the availability of simulation
and test-data is of great importance. To set up a simulation
environment manually, however, is usually a very time con-
suming and error prone task. This is especially true when
the requirements specifications are modified in a rapid suc-
cession (e.g., in an iterative life cycle).

With program synthesis, the development of a simulation
environment can be very straightforward; we synthesize a
program from our given specification which generates test
data. The advantages are obvious: we already have a spec-
ification, and most of the synthesizer’s infra-structure (e.g.,
symbolic handling, code generation) can be used as is for
this task. For AUTOBAYES, we have developed a tool com-
ponent which can synthesize a program to generate random-
ized data according to the given specification. This data gen-
erator could be implemented in less than 200 lines of Prolog
code on top of the AUTOBAYES system.



Conclusions
In this paper, we have briefly described three extensions
to bare-bones program synthesis technology which can in-
crease usability of a synthesis tool in safety-related appli-
cation areas. In the AMPHION/NAV system, a detailed ex-
planation is generated fully automatically and presented in
a way suitable for the domain engineer. It fully hides the
underlying logic and reasoning system used to synthesize
the program. The proof steps is converted in such a way
that it relates the input specification with the final product,
thus opening up an entirely new level of traceability between
specification and source code.

Explanation and documentation is only one aspect. Cur-
rent practice of certification of safety-critical code re-
quires huge testing effort and lengthy manual code re-
views. Automatic certification of synthesized code has the
potential to substantially facilitate and accelerate certifica-
tion. In combination with techniques from proof-carrying
code (Necula & Lee 1998), dynamic certification of field-
loadable software can be addressed. Here again, we bene-
fit from the fact, that the synthesis system encodes enough
domain knowledge such that the required Hoare-style anno-
tations can be made automatically. Last, but not least, trying
out synthesized code during simulation runs is an important
feature for a practical usable system. The test data generator
provides immediate feed-back on the specification (does it
make sense or are there some obvious bugs?) and helps to
navigate through the design space.

All those features form essential ingredients of a modern
program synthesis system if it should have a chance to be
used in practice. Bare-bones synthesis power does not help
here, it only leads to repeating the same mistakes as have
been made with automated theorem provers, which are usu-
ally restricted “more by general usability than by raw deduc-
tive power”2.

References
Burstein, M. B., and Smith, D. 1996. ITAS: A Portable
Interactive Transportation Scheduling Tool Using a Search
Engine Generated from Formal Specifications. InProceed-
ings of the 3rd International Conference on AI Planning
Systems (AIPS-96), 35–44. AAAI Press.
CASC-JC, 2001. The CASC-JC theorem proving compe-
tition. URL:
http://www.cs.miams.edu/˜tptp/CASC/JC .
Controlshell. 2001. RTI Real-Time Innovations.
http://www.rti.com .
Fischer, B., and Schumann, J. 2001. AutoBayes: A sys-
tem for generating data analysis programs from statistical
models. Submitted for publication. Preprint available at
http://ase.arc.nasa.gov/people/...
fischer/papers.html .
Fischer, B.; Schumann, J.; and Pressburger, T. 2000. Gen-
erating data analysis programs from statistical models (po-
sition paper). In Taha, W., ed.,Proc. Intl. Workshop Seman-
tics Applications, and Implementation of Program Gener-

2M. Kaufmann in his invited talk during CADE 15, 1998.

ation, volume 1924 ofLect. Notes Comp. Sci., 212–229.
Montreal, Canada: Springer.
Kaiser, T.; Fischer, B.; and Struckmann, W. 2000. Mop-
s: Verifying Modula-2 programs specified in VDM-SL. In
Proc. 4th Workshop Tools for System Design and Verifica-
tion, 163–167.
MatrixX: AutoCode Product Overview. ISI. URL:
http://www.isi.com .
Necula, G. C., and Lee, P. 1998. Efficient representation
and validation of logical proofs. InProceedings of the 13th
Annual Symposium on Logic in Computer Science (LIC-
S’98), 93–104. IEEE Computer Society Press.
PolySpace technologies.
URL: http://www.polyspace.com .
Schumann, J., and Robinson, P. 2001. [] or success is not
enough: Current technology and future directions in proof
presentation. InFuture Trends in Automated Deduction
(during IJCAR 2001).
Smith, D. R. 1990. KIDS: A Semiautomatic Program De-
velopment System.IEEE Trans. on Software Engineering
16(9):1024–1043.
Stickel, M.; Waldinger, R.; Lowry, M.; Pressburger, T.;
and Underwood, I. 1994. Deductive composition of as-
tronomical software from subroutine libraries. In Bundy,
A., ed.,Proc. 12th International Conference Automated D-
eduction, volume 814 ofLecture Notes in Artificial Intelli-
gence, 341–355. Springer.
van Baalen, J.; Robinson, P.; Lowry, M.; and Pressburger,
T. 1998. Explaining synthesized software. InThirteenth In-
ternational Conference on Automated Software Engineer-
ing, 240–248. IEEE Computer Society Press.
Whalen, M.; Schumann, J.; and Fischer, B. 2002. Synthe-
sizing certified code. InProc. ICSE 2002. (submitted).
Whittle, J.; van Baalen, J.; Schumann, J.; Robinson, P.;
Pressburger, T.; Penix, J.; Oh, P.; Lowry, M.; and Brat, G.
2001. Amphion/NAV: Deductive Synthesis of State Esti-
mation (short paper). InProceedings of the 16th Automated
Software Engineering Conference 2001 (ASE 2001). IEEE.


